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Abstract 

Renormalization of the Fritzsch mam matrices is studied to compare the 

predictions of the ansate imposed at a high scale with low energy data. The 

evolution effects are expected to be moderate, but their impact can be compared 

with rather precise mixing data. The viability of the F’ritssch model is found to 

be little changed by renormalization: with standard Higgs structure it remains 

marginally acceptable, but with two Higgs doublets and a charged Higgs mass 

3 50 Gel’, agreement with KM mixings and B - B mixings is retained with 

a slightly lowered top mass of ? 90 GeV. Remarks concerning the 4-family 

extension imply that the renormalization effects are very signifkaat and can 

not be ignored. 
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The quark masses, mixings and number of families remain completely unspecified 

in the standard model (SM) of strong and electroweak interactions, but beyond the 

SM both the structure and size of the mass matrices should be determined. Even 

without a detailed model, one can speculate about the mechanisms that generate 

certain structures for the mass matrices, and typically the number of parameters will 

be constrained. If there are fewer degrees of freedom than physical quantities to 

be explained, relations between the masses and mixings can be established. In this 

spirit, such mechanisms should set the structure of the mass matrices at the scale 

where contact with the new physics is to be made. Hence any phenomenologically- 

inspired ansate for the mass matrices has to be evolved from that scale where it is 

postulated down to a scale where the experimental data is presently known, 1 GeV, 

for example. Of special importance are such changes that affect the structure of the 

ansatz. 

One popular choice for the g-family quark mass matrices MU and MD is that sug- 

gested by Fritasch’ on the basis of chiral-symmetry breaking in stages and “nearest- 

neighbor” interactions: 

Mu-[; ; j, MD+’ 1. Ij (1) 

where the Hermitian mass matrices are expressed in terms of six real parameters 

and two phases (the up mass matrix can be taken to be real). Since there are only 

eight parameters, there must be two constraints for the six quark masses and three 

mixing angles plus one CP-violating phase. Knowledge of the four independent 

Kobayashi - Maskawas (KM) mixing parameters plus five light quark masses then 

leads to information about the top quark mass. Imposition of additional constraints 

from the recent Ed - & mixing results3 suggests, however, that the Fritzsch model 

with standard Higgs structure is marginally viable, unless two Higgs doublets are 
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The analysis referenced above,’ however, like all others does not take into account 

the renormalization effects that arise when the mass matrices are evolved from the 

high &ml-symmetry breaking scale Arn down to the 1 GeV scale where observations 

are made. In this paper, we take into account the nonlinear terms in the renormal- 

ization group equations (RGE), hi h w c in fact change the form of the Mu and Mn 

matrices, and present detailed numerical results for the experimental comparisons. 

At the one loop level there are three types of corrections to the Yukawa coupling 

vertices: there are loop contributions involving virtual gauge particles (Gr), fermion 

loops appearing in the scalar leg (Tr), and Higgs exchange contributions (Sr) as 

shown in Fig. 1. In terms of these three types of corrections, the general RGE’s can 

be written ass 

-167r 2mY Gy 
3 dt = 1 - Ty 1 - ?Sy My , 

> 
Y = U, D for up and down (2~) 

where 

My=!%, v N 175 GeV 
v 

and in the SM with minimal Higgs structure, for example, 

Gu = G,+g:=8g:+qg;+gg: 

2-u = To = 3 Tmce (MUM? + MDM~) (24 

SFJ = - SD = M”Mt - MDM~ 

Note that the first two terms in (Za) are proportional to unity in flavor space and 

their effect is to rescale the matrices Mr. Only the third term, Sy, evolves the matrix 

structure. Since the over all scale is not explained, we can drop the first two terms 

and absorb their effect in a resealing of the matrices. If we implicitly assume this to 
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be done, we are left with the (non-Hermitian) equations that evolve the structure: 

32~’ dMy -- = SyMy 
3 dt 

The elements of Sy are quadratic in elements of the Yukawa coupling matrices which 

are proportional to masses normalized by the vacuum expectation value. This makes 

clear that renormalization effects do not change the structure if the spectrum is very 

light compared to the vacuum expectation value,’ v = 175 GeV. In this sense the 

simple treatment without renormalization is then the right procedure. On the other 

hand, we know that the top mass has to be rather heavy, and these effects can then 

no longer be ignored. 

The whole task then consists of two non-commuting subtasks. One is the diago- 

nalization of a given structural ansatz and extraction of the masses and mixings at 

a given scale; the other is the solution of the RGE’s. If one can solve the general 

form of the evolution equations for the physical quantities without reference to any 

particular ansatz, it is possible to relate the low energy data to the higher scale. The 

phenomenological ansatz such as (1) is diagonalized in the usual way, and the two 

pieces are put together at the high scale. Another, of course equivalent, way is to 

solve the RGE’s for the phenomenological ansate which converts the original matri- 

ces (since there is no symmetry that protects them) to new matrices at 1 GeV. With 

the usual techniques, the physical quantities are then extracted kom the modified 

matrices and compared with data. The advantage of the first approach is that the 

diagonalization of the ansata is the same as before; only the data are modified by the 

evolution compared to the original values. The second approach has the advantage 

of showing the way in which the original matrices are modified. 

We concentrate on the first method for the moment. With minimal Higgs structure 

‘The relevant v ia defined without the usual factor of Jz. 
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and the definition 

,8(t) = ezp (& J,’ [mt(t’)l+ dtf) = =ZJ [ &$n (&)I (4) 

the results of Ref. 5 can be used to express the KM mixing matrix to a very good 

approximation by 

t 

Kd v;. V*;bpf 
v(t) = Vd K, - fV&(@ - 1) v*pt 

1 

(5) 

v;,pt Wf c;s - ;q,(pt - 1) 

and 
m*(t) = PUfit” ) m.(t) = ruTa, , me(t) = Turn& 

7&-(t) = TDlfid , m,(t) = f,,,iZ, , W‘s(t) = T&&f 
(61 

where a bar denotes quantities at p = 1 GeV and the factors TY correspond to the 

overall resealings from GY and Z’y, which we shall drop immediately. In the model 

with two Higgs doublets and ~11 = vs = v/JZ, @ in the matrix of (5) is replaced by 

P-f, while the factors @ and p-i in (6) are replaced by p and pf, respectively. If we 

pick a certain set of masses with errors, the top mass selected and the scale p = Age 

will determine 0 and, therefore, all data and errors at hse. 

Next we solve the Fritz& ansatz in (1) by using well known matrix techniques 

to express the elements of the mass matrices in terms of eigenvalues and some free 

parameters. Since known masses and the top mass ue input, we look for the KM 

mixing predictions in terms of the masses and other free parameters, i.e., the phase 

angles 4~~ and 4~~. Comparison with the range of experimentally-allowed mixings 

reveals that the V, and Vd elements give the strongest constraints on the allowed 

masses.* For a first discussions we expand the exact results5 for IVu,la and IV,j2 in 

tTherc ia II very tiny arca where the V., element is a bit more restrictive, but we shall ignore 

this. 

SSee ref. 4. Alternatively, we have also used a method based on Sturm sequences which leads 

syatematicdly to very compact results. 
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(7a) 

(7b) 

The simple geometric interpretations of such equations are triangles where the sides 

have lengths IK,l, El E ( or IVLI, E, G n for the second equation) and the 

angle opposite the side proportional to IV,,l (IV&l) is 4~ (4~). 

For the first of these two equations all numbers are tied (including some errors), 

and a solution for d,+, exists. The range of 4~’ is completely determined by the errors 

of the quantities that enter this equation. The second equation has mt as a free 

variable; therefore, we find a range of allowed top masses as a function of ~BS, even 

without experimental errors. Adding the errors will make the allowed range wider. 

From the geometrical interpretation, it is clear that with the two sides IV&l and e 

fixed in length and the angle between them arbitrary, the third side of length E 

ranges between 

~-lv4s~s~+lv~/ 63) 

It is then straightforward to replace the unevolved quantities by their evolved values 

according to (5) and (6) above to determine the bounds on mt with the nonlinear 

renormalization taken into account. As a result (7a) will not change at all, while (7b) 

will get corrections deforming all three sides of the triangle. In the discussion to be 

presented later on we shall quantify these results by giving a more exact treatment 

and extract the physical top mass. 

As a second, alternative approach to the renormalization issue, we consider the 

evolution of the Fritz.& mass matrices in (1) down to the 1 GeV scale. The KM mix- 

ing matrix is then computed from the evolved mass matrices at 1 GeV and compared 

directly with the experimental information existing at that scale. 
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For this purpose, we rewrite the RGE’s in terms of the explicitly Hermitian ma- 

trices Hy = MyM& according to 

32~’ d 
TzH~ = SYHY + HYSY (9) 

since, as we shall see, the mass matrices can evolve into non-Hermitian forms. To a 

good approximation we can hold Sy constant and evaluate it at tsB, corresponding 

to p = ASB, according to 

S(b) = byMuM: + wW& 
o*a) 

2: by (CzEs + BCEz + BCEsa) 

with 

bu = -b,,=l minimal Higgs model 
W) 

bu = 3b, = 1 double Higgs model 

where Mu and MD are given in (l), and Es, E1s and Es2 are the projection matrices 

on the 33, 23 and 32 elements, respectively. The last form is obtained by observation 

in retrospect that C1 N 0.33, BC N 0.03 and the omitted terms such as C”, etc. are 

at least one order of magnitude smaller. We can then successively decouple and solve 

the differential equations in (9) and find to leading order in each element 

A= %A(7 - 1) AB-Y 

Hu(t) N $$A(7 - 1) Bara + AZ + $7 - l)a BCyz + $7(7 - 1) 
I Pa) 

J%(t) N 

\ ABY BC7” + $$7(7 - 1) (C’+ B’)7” 1 

I-W ; B’A’(7’ - 1) A’B’7’ 

$B’*A’*(7’ - 1) 
IB’ + sC’(7’ - I)[’ + lA’la B’C’7’ 

+$9B’l’(7’ - l)l +;(C” + IB’l97’(7 - 1) 

A”B”r’ 
B”C’7 

+;(C” + IB’l’)7’(7’ - 1) 
(C” + I B’Ja)7’? 

(lib) 
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in terms of 

7(t), 7’(t) = exp { &w,o 11, dfC’(f)} 7 

It is then a simple matter to check that the renormalized structure of the up and 

down mass matrices is of the form 

-d+(; ~(;;‘i +) Wa) 

0 A’ 0 

MD(t) N A’* $B’*(,’ - 1) B’ + ;C’(7’ - 1) Pb) 

0 B”7’ C’7’ 

in the approximations made in the determination of HU and HD. Note that Mu 

remains Hermitian while MD becomes non-Hermitian due to the asymmetrical nature 

of the approximations in (IO), reflecting the fact that the top quark mass is by far 

the largest quark mass in the j-family scenario. 

By diagonalizing the renormalized Hermitian matrices M,-, and HD at p = 1 

GeV and identifying the mass eigenvalues as A,, = diag(m,, -m,,mt)/v and A& = 

diag(m$,mj,m~)/~~, respectively, we can relate the matrix elements in Mu(Asa) and 

MD(AsB) of (1) to the quark masses determined at 1 GeV. The invariant traces of 

Mu, MC, HL) and H& and determinants of Mu and HD then lead to 

A’ = mpz,m,/(C7u3) (13a) 

B’7 = (mtms + mcmu - m,m,)/u’ - A’ (W 

C = solution of cubic equation 1~ (m, - m, + mu)/(7v) 

I A’l’ = ,Q,T&,md/( C’7’U”) 

(134 

034 

IB’I’ = $ [$ IA’l’(7’ - 1)’ + $IA’1’(71 - 1)’ + 47” [(m$n; + m;rn; 
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+ dd)/v’ + IA’? - IA’Ia(C’zva7” + m; + m: + m~)/v’]}1’2] (13~) 

C’ = solution of 12th order polynomial equation Y (mb - m, + md)/(7’u) (13f) 

Note that we recover the unevolved results in the limit 7 = 7’ = 1. It is important 

to recognize the roots C and C’ of the polynomial equations referred to in (13~) and 

(13f) must be extracted with high precision. 

We can then apply the projection operator technique of Jarlskog7 to the renor- 

malized matrices Hu and HD to calculate the squares of the KM matrix elements at 

p = 1 GeV, 

IVJ’ = TT [P-P;] (14a) 

where the projection operators P, and Pj are related to Vandermonde matrices and 

determinants 

PI = (AZ I - H,y) (Ai 1 - H,y) / [(A: - X:)(X: - A:)] , etc. (14b) 

as in Ref. 7. 

Finally for both approaches we must take into account the additional evolution of 

the running mass of the top quark from mt(lGeV) to m,(m,). This can be expressed 

by the relation 

where 

mt(mt) = %a,%(%) Ilinear evdutim WI 

rm, = exp (&bu it’ dt’C’(t’)} 

The expression for mt plays an important role in the calculation of the allowed B - l? 

mixing region for which 

m~~~~V,~~~R(z~,z,,v,/v,) N (2.0 f 0.5) 
(0.140)2 

Bsfi 
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as determined by the ARGUS results. s The physical mass of the top quark, as com- 

puted from the running mass with the first order QCD correction 

rnp = m,(m,) [l + $a,] 

then receives a similar correction. For more detailed discussion of the issues raised in 

this paragraph we refer the interested reader to Ref. 4. 

We have now introduced the tools needed to compare the Fritzsch model predic- 

tions with low-energy data when renormalization effects are taken into account. This 

is of considerable interest, for the simple treatment without renormalization calls into 

question the validity of the model, at least when only the minimal Higgs structure is 

present.’ For our renormalization studies, we have applied two different approaches 

&s described above. In the first method where the diagonalization is carried out at 

the high scale, the errors introduced by the approximations arise mainly from the 

lowest-order expansions (which have been carried out to higher order although the 

simplicity is lost immediately) in Eq. (7), while those leading to Eqs. (5) and (6) are 

negligibly small. In the second method where the diagonalization occurred at the low 

scale, the basic approximation retained only the large elements in Sy as indicated in 

(lob) and held them fixed in order to find an approximate analytical solution to the 

RGE’s in (9). A full numerical simulation of the problem, where both integration 

and diagonalization were carried out numerically, confirmed the reliability of those 

approximations. 

To obtain detailed numerical results, we use the Gasser - Leutwyler’ determination 

of the quark masses at 1 GeV and the KM mixing matrix evaluation of Schubert.’ For 

purposes of illustration, in Fig. 2 we plot the phase angle 4~’ of MD vs. mt(lGeV) 

and mfh”’ for the KM-allowed annulus and B - B mixing band for the standard 

Higgs and double Higgs model, with and without evolution. Figure 2a corresponds 

to a special case considered earlier in Ref. 4, where the quark masses selected at 1 
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GeV and scalar Higgs mass are indicated in the figure caption. 

The KM-allowed region without evolution is independent of the particular Higgs 

structure chosen, but the B - B mixing bands depend on the Higgs structure through 

the underlying box diagrams1 involving W boson exchange and also scalar Higgs 

exchange in the case of the double Higgs model. With renormalization taken into ac- 

count, the KM-allowed region now depends on the particular Higgs structure through 

the P-dependence of (5) and (6) and through the 7- and r/-dependence on by in (10). 

The decrease of [mt(lGeV)],,, from 152 GeV in Fig. 2a to 140 GeV in Fig. 2b for 

the SM and to 135 GeV in Fig. 2c for the DHM can be understood qualitatively if 

one compares the approximate upper bounds obtained from the evolved form of (8) 

T&P-~ I@- I~dl.,lPfI-a, (SM) 

&p-i Ifi- Iv#l-‘, (DHM) 
(18) 

with that for the unevolved form with p = 1. The B - B mixing bands also move 

downward, since the running mass of the top quark which enters Eq. (16) is increased 

by the extra factor of 7,,,, in (15). The mTh”’ scales at the bottom of Figs. 2b and 2c 

are also contracted relative to that for Fig. 2a. 

We see that the net effect of the mass renormalization of the Fritzsch matrices is to 

modify the large 33, 23 and 32 elements and to introduce nonvanishing 22 elements, 

which can be comparable in magnitude to the 12 and 21 elements for the case of 

Mu. These modifications result in changes to the KM-allowed region and B - B 

mixing bands as indicated in Fig. 2 and the paragraph above, such that the overlap 

of the two experimental regions is not improved for the Fritzsch model. Unless the 

experimental results obtained for B-B mixing decrease, or the theoretical estimates 

for the product BBfi involving the bag parameter and decay constant increase, the 

3-family Fritzsch model with minimal Higgs structure will be ruled out. With two 

Higgs doublets and a charged Higgs scalar mass - 50 GeV, the model is viable with 
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hi* a top mass mt - 90 GeV. 

It is perhaps surprising that the renormalization effects due to a large top quark 

mass - 90 GeV do not alter the situation more. The reasons that this is not so can 

be traced to the facts that T$~~*/~J - 0.5 is still relatively small, i.e., p - 1.15 for 

ASB = 10s GeV, and that the p and 7,,,* corrections to (16) and (18) are correlated 

and tend to rescale the unevolved plots without greatly influencing the validity of 

the model. The latter is an artifact of the Fritzsch model with its hierarchical ansatz 

and will not be true in general. In particular, extensions to 4 families should lead 

to strong nonlinear renormalization effects, for the fourth family top and bottom 

masses are expected to be O(v), if they exist. Even without a detailed analysis, it is 

clear that the evolution of heavy quarks is then totally dominated by the nonlinear 

fixed points. Additionally, the correlations found for the 3-family Fritzsch ansatz will 

undoubtedly be lost. Therefore, analyses of 4-family models without renormalization 

considerations must be regarded as highly suspect.7 

One of us (CHA) wishes to thank Cecilia Jarlskog for introducing him to her 

powerful projection operator technique and for her continued interest in this work. 
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(A first attempt to include the renormalization effecta in 4-family models has been made in Ref. 

11. 
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Figure Captions 

Figure 1: Loop corrections to the Yukawa coupling vertices involving (a) virtual 

gauge particles, (b) fermions in the scalar leg and (c) scalar Higgs ex- 

change. 

Figure 2: Phase angle 48, vs. mt(lGeV) and T$‘*” plots for the Fritzsch model 

showing the physically- allowed KM annular region and the Bd - & 

mixing bands single-hatched for the standard Higgs model and double- 

hatched for the two-doublet Higgs model. Here (a) refers to no evolution, 

(b) to evolution with standard Higgs structure and (c) to evolution with 

two-doublet Higgs structure. The 1 GeV quark masses chosen for the 

graphs are 7s~~ = 3.5 MeV, ?+id = 6.1 MeV, ?7z, = 120 MeV, 7fL, = 1.35 

GeV and ?i&b = 5.3 GeV along with a charged scalar Higgs mass of 50 

GeV. 
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